题目内容
【题目】对于数轴上的A、B、C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“至善点”.例如:若数轴上点A、B、C所表示的数分别为1、3、4,则点B是点A、C的“至善点”.
(1)若点A表示数﹣2,点B表示数2,下列各数、0、1、6所对应的点分别为C1、C2、C3、C4,其中是点A、B的“至善点”的有 (填代号);
(2)已知点A表示数﹣1,点B表示数3,点M为数轴上一个动点:
①若点M在点A的左侧,且点M是点A、B的“至善点”,求此时点M表示的数m;
②若点M在点B的右侧,点M、A、B中,有一个点恰好是其它两个点的“至善点”,求出此时点M表示的数m.
【答案】(1)C1、C4;(2)①﹣5;②点M表示的数m可以为5,7,11
【解析】
(1)根据C1、C2、C3、C4所表示的数,分别计算这个点到A、B的距离,根据“至善点”的意义进行判断即可;
(2)①点M在点A的左侧,则m<﹣1,点M是点A、B的“至善点”,则有2MA=MB,列方程求解即可;
②点M在点B的右侧,则m>3,由点M、A、B中,有一个点恰好是其它两个点的“至善点”,分三种情况进行讨论: M是A、B的“至善点”,A是B、M的“至善点”,B是A、M的“至善点”,分别建立方程即可求解.
解:(1)当C1=﹣时,AC1=|﹣+2|=,BC1=|2+|=,有BC1=2AC1,因此C1符合题意;
当C2=0时,AC2=|0+2|=2,BC2=|2+0|=2,有BC2=AC2,因此C2不符合题意;
当C3=1时,AC3=|1+2|=3,BC3=|2﹣1|=1,有3BC3=AC3,因此C3不符合题意;
当C4=6时,AC4=|6+2|=8,BC4=|2﹣6|=4,有2BC4=AC4,因此C4符合题意;
故答案为:C1、C4;
(2)①点M在点A的左侧,则m<﹣1,
点M是点A、B的“至善点”,因此有2MA=MB,即2(﹣1﹣m)=3﹣m,
解得,m=﹣5,
②点M在点B的右侧,则m>3,
点M、A、B中,有一个点恰好是其它两个点的“至善点”,
Ⅰ)若M是A、B的“至善点”,则2MB=MA,即2(m﹣3)=m+1,解得m=7,
Ⅱ)若A是B、M的“至善点”,则2AB=AM,即2(3+1)=m+1,解得m=7,
Ⅲ)若B是A、M的“至善点”,则2AB=BM或AB=2BM,即2(3+1)=m﹣3或3+1=2(m﹣3),解得m=11或m=5,
答:点M表示的数m可以为5,7,11.