题目内容
如图,△ABC与△DEF是两个全等的等腰直角三角形,∠BAC=∠D=90°,AB=AC=
.现将△DEF与△ABC按如图所示的方式叠放在一起.现将△ABC保持不动,△DEF运动,且满足:点E在边BC上运动(不与B、C重合),且边DE始终经过点A,EF与AC交于M点.请问:在△DEF运动过程中,△AEM能否构成等腰三角形?若能,请求出BE的长;若不能,请说明理由.
2 |
①若AE=AM则∠AME=∠AEM=45°
∵∠C=45°
∴∠AME=∠C
又∵∠AME>∠C
∴这种情况不成立;
②若AE=EM
∵∠B=∠AEM=45°
∴∠BAE+∠AEB=135°,∠MEC+∠AEB=135°
∴∠BAE=∠MEC
在△ABE和△ECM中
∴△ABE≌△ECM(AAS),
∴CE=AB=
∵BC=
=2
∴BE=2-
;
③若MA=ME则∠MAE=∠AEM=45°
∵∠BAC=90°∴∠BAE=45°
∴AE平分∠BAC
∵AB=AC∴BE=
BC=1.
∵∠C=45°
∴∠AME=∠C
又∵∠AME>∠C
∴这种情况不成立;
②若AE=EM
∵∠B=∠AEM=45°
∴∠BAE+∠AEB=135°,∠MEC+∠AEB=135°
∴∠BAE=∠MEC
在△ABE和△ECM中
|
∴△ABE≌△ECM(AAS),
∴CE=AB=
2 |
∵BC=
AB2+BC2 |
∴BE=2-
2 |
③若MA=ME则∠MAE=∠AEM=45°
∵∠BAC=90°∴∠BAE=45°
∴AE平分∠BAC
∵AB=AC∴BE=
1 |
2 |
练习册系列答案
相关题目