题目内容
【题目】阅读下列材料:
1×2=(1×2×3﹣0×1×2)
2×3=(2×3×4﹣1×2×3)
3×4=(3×4×5﹣2×3×4)
由以上三个等式相加,可得:1×2+2×3+3×4=×3×4×5=20,读完以上材料,请你计算下列各题:
(1)1×2+2×3+3×4+…+10×11(写出过程)
(2)1×2+2×3+3×4+…+n×(n+1)= ;
(3)1×2×3+2×3×4+3×4×5+…+9×10×11= .
【答案】(1)440,过程见解析;(2)n(n+1)(n+2);(3)2970
【解析】
根据给定等式的变化找出变化规律“n(n+1)= [n(n+1)(n+2)-(n-1)n(n+1)]”.
(1)根据变化规律将算式展开后即可得出原式=×10×11×12,此题得解;
(2)根据变化规律将算式展开后即可得出原式=n(n+1)(n+2),此题得解;
(3)通过类比找出变化规律“n(n+1)(n+2)=[n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)]”,依此规律将算式展开后即可得出结论.
观察,发现规律:1×2=(1×2×3﹣0×1×2),2×3=(2×3×4﹣1×2×3),3×4=(3×4×5﹣2×3×4),…,
∴n(n+1)=[n(n+1)(n+2)﹣(n﹣1)n(n+1)].
(1)1×2+2×3+3×4+…+10×11
=(1×2×3﹣0×1×2)+(2×3×4﹣1×2×3)+(3×4×5﹣2×3×4)+…+(10×11×12﹣9×10×11),
=×10×11×12,
=440.
(2)1×2+2×3+3×4+…+n×(n+1)
=(1×2×3﹣0×1×2)+(2×3×4﹣1×2×3)+(3×4×5﹣2×3×4)+…+[n(n+1)(n+2)﹣(n﹣1)n(n+1)],
=n(n+1)(n+2).
故答案为:n(n+1)(n+2).
(3)观察,发现规律:1×2×3=(1×2×3×4﹣0×1×2×3),2×3×4=(2×3×4×5﹣1×2×3×4),3×4×5=(3×4×5×6﹣2×3×4×5),…,
∴n(n+1)(n+2)=[n(n+1)(n+2)(n+3)﹣(n﹣1)n(n+1)(n+2)],
∴原式=(1×2×3×4﹣0×1×2×3)+(2×3×4×5﹣1×2×3×4)+(3×4×5×6﹣2×3×4×5)+…+(9×10×11×12﹣8×9×10×11),
=×9×10×11×12,
=2970.
故答案为:2970.
【题目】三峡水库在正常运用情况下,为满足兴利除害的要求而蓄到的最高蓄水位为米,每年汛期允许蓄水的最大水位为米。在每年汛期,保证上游水位在米的防洪限制水位,多出米的相应库容以迎接洪峰。洪峰后,超过米的水量下泄,为下次洪峰做准备,下泄的水使中下游江面的水位升高,但不影响人们的生命和财产安全。监测水位变化的数据为防洪抗旱提供重要依据,根据多年统计,洪峰到达时万州监测点的平均水位为米。下列是水位监测员小刘在汛期某一周每天同一时间统计的长江(万州监测点)水位高低的变化情况:(单位:米,用正数记水位比米的上升数,用负数记下降数)
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
水位变化 |
(1)本周星期三万州监测点的实际水位是多少?
(2)若水位每上升米,蓄水量将增加亿立方米,则根据数据显示,星期六的蓄水量比星期四的蓄水量增加了多少亿立方米?
【题目】某原料仓库一天的原料进出记录如下表(运进用正数表示,运出用负数表示);
每次进出数量(单位:吨) | -3 | 4 | -1 | 2 | -5 |
进出次数 | 2 | 1 | 3 | 3 | 2 |
(1)这天仓库的原料比原来增加或减少了多少吨?
(2)根据实际情况,现有两种方案:
方案一:运进每吨原料费用5元,运出每吨原料费用8元;
方案二:不管运进还是运出费用都是每吨原料6元;
从节约运费的角度考虑,选用哪一种方案较合适?请说明理由.