题目内容
【题目】如图,△ABC在平面直角坐标系中,∠ACB=90°,AC=BC,A的坐标是(0,m)(m<0),点C的坐标是(2,0),点B在x轴上方.
(1)如图1所示,若点B在y轴上,则m的值是 ;
(2)如图2所示,BC与y轴交于点D.
①若m=﹣6,求点B的坐标;
②若y轴恰好平分∠BAC,求OD的长.
【答案】(1)-2;(2)①B(﹣4,2);②OD=2﹣2.
【解析】
(1)利用等腰直角三角形的性质和判定解答即可;
(2)①如图2﹣1中,作BH⊥x轴于H.利用余角的性质可得∠BCH=∠OAC,然后根据AAS即可证明△BHC≌△COA,进一步利用全等三角形的性质即可求出结果;
②如图2﹣2中,在OA截取一点F,使得OF=OC,则OF和FC可得,由角平分线的性质和三角形的外角性质可得△AFC是等腰三角形,于是OA可得,易证△COD∽△AOC,然后利用相似三角形的性质即可求出结果.
解:(1)如图1中,∵CB=CA,OC⊥AB,∴∠OCB=∠OCA=45°,
∴OA=OC=2,∴A(0,﹣2),∴m=﹣2.
故答案为﹣2;
(2)①如图2﹣1中,作BH⊥x轴于H.
∵∠AOC=∠BHC=∠ACB=90°,
∴∠BCH+∠ACO=90°,∠ACO+∠OAC=90°,
∴∠BCH=∠OAC,
∵BC=AC,∴△BHC≌△COA(AAS),
∴BH=OC=2,CH=OA=6,
∴OH=CH﹣OC=4,
∴B(﹣4,2);
②如图2﹣2中,在OA截取一点F,使得OF=OC.
∵OF=OC=2,∠FOC=90°,∴FC=2,∠OFC=∠OCF=45°,
∵AD平分∠CAB,∴∠DAC=∠CAB=22.5°,
∵∠OFC=∠FAC+∠FCA,∴∠FCA=22.5°,
∴∠FAC=∠FCA=22.5°,
∴AF=CF=2,
∴OA=2+2,∴A(0,﹣2﹣2),
∵∠DCO=∠OAC,∠COD=∠AOC=90°,
∴△COD∽△AOC,∴,即,
∴OD=2﹣2.