题目内容
【题目】问题背景:
如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD之间的数量关系.
小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图②),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE= CD,从而得出结论:AC+BC= CD.
简单应用:
(1)在图①中,若AC= ,BC=2 ,则CD= .
(2)如图③,AB是⊙O的直径,点C、D在⊙上, = ,若AB=13,BC=12,求CD的长.
拓展规律:
(3)如图④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示)
(4)如图⑤,∠ACB=90°,AC=BC,点P为AB的中点,若点E满足AE= AC,CE=CA,点Q为AE的中点,则线段PQ与AC的数量关系是 .
【答案】
(1)3
(2)
解:连接AC、BD、AD,
∵AB是⊙O的直径,
∴∠ADB=∠ACB=90°,
∵ ,
∴AD=BD,
将△BCD绕点D,逆时针旋转90°到△AED处,如图③
,
∴∠EAD=∠DBC,
∵∠DBC+∠DAC=180°,
∴∠EAD+∠DAC=180°,
∴E、A、C三点共线,
∵AB=13,BC=12,
∴由勾股定理可求得:AC=5,
∵BC=AE,
∴CE=AE+AC=17,
∵∠EDA=∠CDB,
∴∠EDA+∠ADC=∠CDB+∠ADC,
即∠EDC=∠ADB=90°,
∵CD=ED,
∴△EDC是等腰直角三角形,
∴CE= CD,
∴CD=
(3)
解:以AB为直径作⊙O,连接OD并延长交⊙O于点D1,连接D1A,D1B,D1C,如图④
由(2)的证明过程可知:AC+BC= D1C,
∴D1C= ,
又∵D1D是⊙O的直径,
∴∠DCD1=90°,
∵AC=m,BC=n,
∴由勾股定理可求得:AB2=m2+n2,
∴D1D2=AB2=m2+n2,
∵D1C2+CD2=D1D2,
∴CD=m2+n2﹣ = ,
∵m<n,
∴CD= ;
(4)[ "解:当点E在直线AC的左侧时,如图⑤
,
连接CQ,PC,
∵AC=BC,∠ACB=90°,
点P是AB的中点,
∴AP=CP,∠APC=90°,
又∵CA=CE,点Q是AE的中点,
∴∠CQA=90°,
设AC=a,
∵AE= AC,
∴AE= a,
∴AQ= AE= ,
由勾股定理可求得:CQ= a,
由(2)的证明过程可知:AQ+CQ= PQ,
∴ PQ= a+ a,
∴ PQ= AC;
当点E在直线AC的右侧时,如图⑥
【解析】解:(1)由题意知:AC+BC= CD,
∴3 +2 = CD,
∴CD=3,;
(1)由题意可知:AC+BC= CD,所以将AC与BC的长度代入即可得出CD的长度;(2)连接AC、BD、AD即可将问题转化为第(1)问的问题,利用题目所给出的证明思路即可求出CD的长度;(3)以AB为直径作⊙O,连接OD并延长交⊙O于点D1 , 由(2)问题可知:AC+BC= CD1;又因为CD1=D1D,所以利用勾股定理即可求出CD的长度;(4)根据题意可知:点E的位置有两种,分别是当点E在直线AC的右侧和当点E在直线AC的左侧时,连接CQ、CP后,利用(2)和(3)问的结论进行解答.本题考查圆的综合问题,每一问都紧扣着前一问的结论,涉及勾股定理、圆周角定理,旋转的性质等知识,解题的关键是就利用好已证明的结论来进行解答,考查学生综合运用知识的能力.