题目内容

【题目】如图,在△ABC中,AB=AC,BD=CF,BE=CD,若∠A=40°,则∠EDF的度数为(

A.75°
B.70°
C.65°
D.60°

【答案】B
【解析】解:∵AB=AC,∠A=40°∴∠B=∠C=70°
∵EB=BD=DC=CF
∵△BED和△CDF中,

∴△BED≌△CDF(SAS)
∴∠BDE=∠CFD,∠BED=∠CDF
∵∠EDF=180°﹣∠CDF﹣∠BDE=180°﹣(∠CDF+∠BDE)
∵∠B=70°
∴∠BDE+∠BED=110°即∠CDF+∠BDE=110°
∴∠EDF=180°﹣110°=70°.
故选B.
利用等腰三角形的性质及三角形内角和定理先求出∠B、∠C的度数,利用SAS判定△BED≌△CDF,从而得出对应角相等,再利用角与角之间的关系从而求得所求的角.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网