题目内容
【题目】 为倡导“低碳生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图.车架档AC与CD的长分别为45cm,60cm,且它们互相垂直,座杆CE的长为20cm,点A,C,E在同一条直线上,且∠CAB=75°,如图2.
(1)求车架档AD的长;
(2)求车座点E到车架档AB的距离.
(结果精确到1 cm.参考数据: sin75°="0.966," cos75°=0.259,tan75°=3.732)
【答案】(1)75cm(2)63cm
【解析】
解:(1)在Rt△ACD中,AC=45,CD=60,∴AD=,
∴车架档AD的长为75cm.
(2)过点E作EF⊥AB,垂足为点F,
距离EF=AEsin75°=(45+20)sin75°≈62.7835≈63.
∴车座点E到车架档AB的距离是63cm.
(1)在Rt△ACD中利用勾股定理求AD即可.
(2)过点E作EF⊥AB,在Rt△EFA中,利用三角函数求EF=AEsin75°,即可得到答案.
练习册系列答案
相关题目
【题目】某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:
x | … | ﹣3 | ﹣ | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … | |
y | … | 3 | m | ﹣1 | 0 | ﹣1 | 0 | 3 | … |
其中,m= .
(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.
(3)观察函数图象,写出两条函数的性质.
(4)进一步探究函数图象发现:
①函数图象与x轴有 个交点,所以对应的方程x2﹣2|x|=0有 个实数根;
②方程x2﹣2|x|=2有 个实数根.
③关于x的方程x2﹣2|x|=a有4个实数根时,a的取值范围是 .