题目内容

【题目】如图1,已知在⊙O中,点C为劣弧AB上的中点,连接AC并延长至D,使CD=CA,连接DB并延长DB交⊙O于点E,连接AE.
(1)求证:AE是⊙O的直径;
(2)如图2,连接EC,⊙O半径为5,AC的长为4,求阴影部分的面积之和.(结果保留π与根号)

【答案】
(1)证明:连接CB,AB,CE,

∵点C为劣弧AB上的中点,

∴CB=CA,

又∵CD=CA,

∴AC=CD=BC,

∴∠ABC=∠BAC,∠DBC=∠D,

∵Rt△斜边上的中线等于斜边的一半,

∴∠ABD=90°,

∴∠ABE=90°,

即弧AE的度数是180°,

∴AE是⊙O的直径


(2)解:∵AE是⊙O的直径,

∴∠ACE=90°,

∵AE=10,AC=4,

∴根据勾股定理得:CE=2

∴S阴影=S半圆﹣SACE=12.5π﹣ ×4×2 =12.5π﹣4


【解析】(1)连接CB,AB,CE,由点C为劣弧AB上的中点,可得出CB=CA,再根据CD=CA,得△ABD为直角三角形,可得出∠ABE为直角,根据90度的圆周角所对的弦为直径,从而证出AE是⊙O的直径;(2)由(1)得△ACE为直角三角形,根据勾股定理得出CE的长,阴影部分的面积等于半圆面积减去三角形ACE的面积.
【考点精析】本题主要考查了勾股定理的概念和圆周角定理的相关知识点,需要掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网