题目内容
【题目】如图,菱形ABCD中,∠ABC=56°,点E,F分别在BD,AD上,当AE+EF的值最小时,则∠AEF=___度.
【答案】56
【解析】
连接AC,过点C作CF⊥AD,交BD于点E,交AD于点F,连接AE,根据菱形的性质和垂线段最短可得此时AE+EF的值最小,且最小值即为CF的长,然后根据等腰三角形的性质、直角三角形的性质和三角形外角的性质即可求出结论.
解:连接AC,过点C作CF⊥AD,交BD于点E,交AD于点F,连接AE
∵四边形ABCD为菱形,∠ABC=56°
∴菱形ABCD是以BD所在直线为对称轴的轴对称图形,∠ADC=∠ABC=56°,DA=DC
∴AE=CE,∠DAC=∠DCA=(180°-∠ADC)=62°
∴此时AE+EF=CE+EF=CF,∠EAC=∠ECA
根据垂线段最短可知:此时AE+EF的值最小,且最小值即为CF的长
∵CF⊥AD
∴∠AFC=90°
∴∠ECA=90°-∠DAC=28°
∴∠EAC=28°
∴∠AEF=∠EAC+∠ECA=56°
故答案为:56.
练习册系列答案
相关题目
【题目】鄂北公司以10元/千克的价格收购一批产品进行销售,为了得到日销售量y(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如表:
销售价格x(元/千克) | 10 | 15 | 20 | 25 | 30 |
日销售量y(千克) | 300 | 225 | 150 | 75 | 0 |
(1)请你根据表中的数据确定y与x之间的函数表达式;
(2)鄂北公司应该如何确定这批产品的销售价格,才能使日销售利润W1元最大?
(3)若鄂北公司每销售1千克这种产品需支出a元(a>0)的相关费用,当20≤x≤25时,鄂北公司的日获利W2元的最大值为1215元,求a的值.