题目内容
【题目】已知抛物线 与轴的两个交点间的距离为2.
(1)若此抛物线的对称轴为直线 ,请判断点(3,3)是否在此抛物线上?
(2)若此抛物线的顶点为(S,t),请证明;
(3)当时,求的取值范围
【答案】(1)点(3,3)在此抛物线上;(2)见解析;(3)24<b<99.
【解析】
(1)根据已知条件得出两个交点坐标,利用待定系数法求出解析式,然后验证点(3,3)是否在这条抛物线上即可;
(2)先确定对称轴为直线,再得出与x轴的两交点坐标为(,0)和(,0),再利用待定系数法求出解析式的顶点式可得解;
(3)把t=-1代入顶点坐标公式,得到二次函数解析式,根据函数的增减性分别计算a=10和20时b的值从而得解.
(1)抛物线的对称轴为直线,且抛物线与轴的两个交点间的距离为2,可得抛物线与轴的两个交点为(0,0)和(2,0),
所以抛物线 的解析式为与
当时,
所以点(3,3)在此抛物线上 .
(2)抛物线的顶点为,则对称轴为直线,且抛物线与轴的两个交点间的距离为2,
可得抛物线与轴的两个交点为(,,0)和(,0)
所以抛物线 的解析式为与
由得
所以;
(3)由(2)知 即 整理得
由对称轴为直线,且二次项系数
可知 当时,b的随a的增大而增大
当a=10时,得
当a=20时,得
所以 当时,
练习册系列答案
相关题目