题目内容
【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,﹣ ),且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边).
(1)求抛物线的解析式及A、B两点的坐标;
(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由;
(3)以AB为直径的⊙M相切于点E,CE交x轴于点D,求直线CE的解析式.
【答案】
(1)
解:由题意,设抛物线的解析式为y=a(x﹣4)2﹣ (a≠0)
∵抛物线经过(0,2)
∴a(0﹣4)2﹣ =2
解得:a=
∴y= (x﹣4)2﹣
即:y= x2﹣ x+2
当y=0时, x2﹣ x+2=0
解得:x=2或x=6
∴A(2,0),B(6,0)
(2)
解:存在,
如图2,由(1)知:抛物线的对称轴l为x=4,
因为A、B两点关于l对称,连接CB交l于点P,则AP=BP,所以AP+CP=BC的值最小
∵B(6,0),C(0,2)
∴OB=6,OC=2
∴BC=2 ,
∴AP+CP=BC=2
∴AP+CP的最小值为2
(3)
解:如图3,连接ME
∵CE是⊙M的切线
∴ME⊥CE,∠CEM=90°
∵C的坐标(0,2),
∴OC=2,
∵AB=4,
∴ME=2
∴OC=ME=2,
∵∠ODC=∠MDE,
∵在△COD与△MED中
∴△COD≌△MED(AAS),
∴OD=DE,DC=DM
设OD=x
则CD=DM=OM﹣OD=4﹣x
则Rt△COD中,OD2+OC2=CD2,
∴x2+22=(4﹣x)2
∴x=
∴D( ,0)
设直线CE的解析式为y=kx+b(k≠0),
∵直线CE过C(0,2),D( ,0)两点,
则
解得:
∴直线CE的解析式为y=﹣ +2;
【解析】(1)利用顶点式求得二次函数的解析式后令其等于0后求得x的值即为与x轴交点坐标的横坐标;(2)线段BC的长即为AP+CP的最小值;(3)连接ME,根据CE是⊙M的切线得到ME⊥CE,∠CEM=90°,从而证得△COD≌△MED,设OD=x,在RT△COD中,利用勾股定理求得x的值即可求得点D的坐标,然后利用待定系数法确定线段CE的解析式即可.