题目内容
【题目】如图,直线AB、CD相交于点O,OE平分∠BOD.
(1)若∠AOC=70°,∠DOF=90°,求∠EOF的度数;
(2)若OF平分∠COE,∠BOF=15°,求∠AOC的度数。
【答案】(1)55°(2)100°
【解析】
(1)根据对顶角相等,可得∠BOD=∠AOC,再根据OE平分∠∠BOD,可得∠EOD,由角的和差,可得答案;
(2)根据对顶角相等,可得∠BOD=∠AOC,根据OE平分∠BOD,可得∠EOD,根据邻补角,可得∠COE,根据角的和差,可得∠EOF,根据角平分线,可得答案.
(1)∠DOB=∠AOC=70°
∵OE平分∠BOD
∴∠DOE= ∠BOD=35°
∴∠EOF=∠DOF∠DOE=55°;
(2)设∠AOC=x,则∠DOB=∠AOC=x
∵OE平分∠BOD
∴∠DOE=∠EOB=∠BOD=x
∴∠EOC=180°∠DOE=180°
∵∠EOF=∠EOB+∠BOF
∴∠EOF=+15°
∵OF平分∠COE
∴∠EOC=2∠EOF
∴180=2(+15°)
解得:x=100°
即∠AOC=100°.
练习册系列答案
相关题目
【题目】商场销售某种冰箱,该种冰箱每台进价为2500元.已知原销售价为每台2900元时,平均每天能售出8台.若在原销售价的基础上每台降价50元,则平均每天可多售出4台.设每台冰箱的实际售价比原销售价降低了x元.
(1)填表(不需化简):
每天的销售量/台 | 每台销售利润/元 | |
降价前 | 8 | 400 |
降价后 |
(2)商场为使这种冰箱平均每天的销售利润达到5000元,则每台冰箱的实际售价应定为多少元?