题目内容
【题目】如图,在等腰梯形ABCD中,已知AD∥BC,AB=DC,AC与BD交于点O,延长BC到E,使得CE=AD,连接DE.
(1)求证:BD=DE.
(2)若AC⊥BD,AD=3,SABCD=16,求AB的长.
【答案】(1)见解析;(2).
【解析】
试题分析:(1)由AD∥BC,CE=AD,可得四边形ACED是平行四边形,即可证得AC=DE,又由等腰梯形的性质,可得AC=BD,即可证得结论;
(2)首先过点D作DF⊥BC于点F,可证得△BDE是等腰直角三角形,由SABCD=16,可求得BD的长,继而求得答案.
(1)证明:∵AD∥BC,CE=AD,
∴四边形ACED是平行四边形,
∴AC=DE,
∵四边形ABCD是等腰梯形,AD∥BC,AB=DC,
∴AC=BD,
∴BD=DE.
(2)解:过点D作DF⊥BC于点F,
∵四边形ACED是平行四边形,
∴CE=AD=3,AC∥DE,
∵AC⊥BD,
∴BD⊥DE,
∵BD=DE,
∴S△BDE=BDDE=BD2=BEDF=(BC+CE)DF=(BC+AD)DF=S梯形ABCD=16,
∴BD=4,
∴BE=BD=8,
∴DF=BF=EF=BE=4,
∴CF=EF﹣CE=1,
∴由勾股定理得AB=CD==.
练习册系列答案
相关题目