题目内容
【题目】在平面直角坐标系xOy中,抛物线G:y=mx2+2mx+m﹣1(m≠0)与y轴交于点C,抛物线G的顶点为D,直线:y=mx+m﹣1(m≠0).
(1)当m=1时,画出直线和抛物线G,并直接写出直线被抛物线G截得的线段长.
(2)随着m取值的变化,判断点C,D是否都在直线上并说明理由.
(3)若直线被抛物线G截得的线段长不小于2,结合函数的图象,直接写出m的取值范围.
【答案】(1)见解析;(2)无论m取何值,点C,D都在直线上,见解析;(3)m的取值范围是m≤﹣或m≥.
【解析】
(1)当m=1时,抛物线G的函数表达式为y=x2+2x,直线的函数表达式为y=x,求出直线被抛物线G截得的线段,再画出两个函数的图象即可;
(2)先求出C、D两点的坐标,再代入直线的解析式进行检验即可;
(3)先联立直线与抛物线的解析式,求出它们的交点坐标,再根据这两个交点之间的距离不小于2列出不等式,求解即可.
(1)当m=1时,抛物线G的函数表达式为y=x2+2x,直线的函数表达式为y=x,
直线被抛物线G截得的线段长为,
画出的两个函数的图象如图所示:
(2)无论m取何值,点C,D都在直线上.理由如下:
∵抛物线G:y=mx2+2mx+m-1(m≠0)与y轴交于点C,
∴点C的坐标为C(0,m-1),
∵y=mx2+2mx+m-1=m(x+1)2-1,
∴抛物线G的顶点D的坐标为(-1,-1),
对于直线:y=mx+m-1(m≠0),
当x=0时,y=m-1,
当x=-1时,y=m×(-1)+m-1=-1,
∴无论m取何值,点C,D都在直线上;
(3)解方程组,
得 ,或,
∴直线与抛物线G的交点为(0,m-1),(-1,-1).
∵直线被抛物线G截得的线段长不小于2,
∴≥2,
∴1+m2≥4,m2≥3,
∴m≤-或m≥
,
∴m的取值范围是m≤-或m≥.
【题目】为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根调查结果绘制成的统计图(部分)如图所示.
大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表
一周诗词诵背数量 | 3首 | 4首 | 5首 | 6首 | 7首 | 8首 |
人数 | 10 | 10 | 15 | 40 | 25 | 20 |
请根据调查的信息
(1)活动启动之初学生“一周诗词诵背数量”的中位数为 ;
(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;
(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.
【题目】为丰富学生的课余生活,某校记划开展三种拓展课活动,分别是“文学赏析”,“趣味数学”,“科学实验”等项目,要求每位学生自主选择其中一项拓展课参加.随机抽取该校各年段部分学生,对选择拓展课的意向进行调査,将调查的结果制作成以下统计图和不完整的统计表.
某校被调查学生选择拓展课意向统计表
选择意向 | 所占百分比 |
文学赏析 |
|
趣味数学 | 35% |
科学实验 |
|
其它 | 30% |
(1)该校有2000名学生,请你估计大约有多少名学生参加科学实验拓展课,并补全统计表.
(2)该校参加科学实验拓展课的学生随机分成A,B,C三个人数相同的班级.小慧和小明都参加科学实验拓展课,求他们同班级的概率(画树状图或列表法求解)