题目内容
【题目】已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0.
(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根;
(2)当一矩形ABCD的对角线长为AC=,且矩形两条边AB和BC恰好是这个方程的两个根时,求矩形ABCD的周长.
【答案】(1)详见解析;(2)14.
【解析】
(1)计算判别式的值得到△=(2k﹣3)2+4,利用非负数的性质得到△>0,从而根据判别式的意义得到结论;
(2)利用根与系数的关系得到AB+BC=2k+1,ABBC=4k﹣3,利用矩形的性质和勾股定理得到AB2+BC2=AC2=()2,则(2k+1)2﹣2(4k﹣3)=31,解得k1=3,k2=﹣2,利用AB、BC为正数得到k的值为3,然后计算AB+BC得到矩形ABCD的周长.
(1)证明:△=(2k+1)2﹣4(4k﹣3)
=4k2+4k+1﹣16k+12
=4k2﹣12k+13
=(2k﹣3)2+4,
∵(2k﹣3)2≥0,
∴△>0,
∴无论k取什么实数值,该方程总有两个不相等的实数根;
(2)根据题意得AB+BC=2k+1,ABBC=4k﹣3,
而AB2+BC2=AC2=()2,
∴(2k+1)2﹣2(4k﹣3)=31,
整理得k2﹣k﹣6=0,解得k1=3,k2=﹣2,
而AB+BC=2k+1>0,ABBC=4k﹣3>0,
∴k的值为3,
∴AB+BC=7,
∴矩形ABCD的周长为14.
练习册系列答案
相关题目