题目内容
【题目】如图,在数轴上有三个点A、B、C,完成下列问题:
(1)将点B向右移动六个单位长度到点D,在数轴上表示出点D.
(2)在数轴上找到点E,使点E为BA的中点(E到A、C两点的距离相等),井在数轴上标出点E表示的数,求出CE的长.
(3)O为原点,取OC的中点M,分OC分为两段,记为第一次操作:取这两段OM、CM的中点分别为了N1、N2,将OC分为4段,记为第二次操作,再取这两段的中点将OC分为8段,记为第三次操作,第六次操作后,OC之间共有多少个点?求出这些点所表示的数的和.
【答案】(1)如图所示见解析;(2)如图所示,点E表示的数为:﹣3.5,CE=4﹣(﹣3.5)=7.5;(3)OC之间共有65个点;这些点所表示的数的和为130.
【解析】
(1)根据数轴上的点移动时的大小变化规律,即“左减右加”即可得到结论;
(2)根据题意列式计算即可;
(3)根据题意得到点数是2的指数次幂+1,据此计算即可.
(1)如图所示,
(2)如图所示,点E表示的数为:﹣3.5,
∵点C表示的数为:4,
∴CE=4﹣(﹣3.5)=7.5;
(3)∵第一次操作:有3=(21+1)个点,
第二次操作,有5=(22+1)个点,
第三次操作,有9=(23+1)个点,
∴第六次操作后,OC之间共有(26+1)=65个点;
∵65个点除去0有64个数,
∴这些点所表示的数的和=4×()=130.
【题目】某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表:
原进价(元/张) | 零售价(元/张) | 成套售价(元/套) | |
餐桌 | a | 270 | 500元 |
餐椅 | a﹣110 | 70 |
已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.
(1)求表中a的值;
(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?
【题目】某商场用2730元购进A、B两种新型节能日光灯共60盏,这两种日光灯的进价、标价如下表所示.
价格/类型 | A型 | B型 |
进价(元/盏) | 35 | 65 |
标价(元/盏) | 50 | 100 |
(1)这两种日光灯各购进多少盏?
(2)若A型日光灯按标价的9折出售,要使这批日光灯全部售出后商场获得810元的利润,则B型日光灯应按标价的几折出售?