题目内容
【题目】已知数轴上点在原点的左边,到原点的距离为4,点在原点右边,从点走到点,要经过16个单位长度.
(1)写出、两点所对应的数;
(2)若点也是数轴上的点,点到点的距离是点到原点距离的3倍,求对应的数;
(3)已知点从点开始向右出发,速度每秒1个单位长度,同时从点开始向右出发,速度每秒2个单位长度,设线段的中点为,线段的值是否会发生变化?若会,请说明理由,若不会,请求出求其值.
【答案】(1)-4,12;(2)-6或3;(3)不变化,6
【解析】
(1)直接根据实数与数轴上各点的对应关系求出A,B表示的数即可;
(2)设点C表示的数为c,再根据点C到点B的距离是点C到原点的距离的3倍列出关于c的方程,求出c的值即可;
(3)设运动时间为t秒,则AM=t,NO=12+2t,再根据点P是NO的中点用t表示出PO的长,再求出PO-AM的值即可.
(1)∵数轴上点A在原点左边,到原点的距离为4个单位长度,点B在原点的右边,从点A走到点B,要经过16个单位长度,
∴点A表示-4,点B表示12;
(2)设点C表示的数为c,
∵点C到点B的距离是点C到原点的距离的3倍,
∴|c-12|=3|c|,
∴c-12=3c或c-12=-3c,解得c=-6或c=3;
(3)不变化.
设运动时间为t秒,则AM=t,NO=12+2t,
∵点P是NO的中点,
∴PO=6+t,
∴PO-AM=6+t-t=6,
∴PO-AM的值没有变化.
练习册系列答案
相关题目