题目内容
如图,AB为⊙O的直径,D为⊙O上一点,DE是⊙O的切线,DE⊥AC交AC的延长线于点E,FB是⊙O的切线交AD的延长线于点F.

(1)求证:AD平分∠BAC;
(2)若DE=3,⊙O的半径为5,求BF的长.

(1)求证:AD平分∠BAC;
(2)若DE=3,⊙O的半径为5,求BF的长.
(1)证明见解析;(2)BF=
.

试题分析:(1)连接BC、OD,由D是弧BC的中点,可知:OD⊥BC;由OB为⊙O的直径,可得:BC⊥AC,根据DE⊥AC,可证OD⊥DE,从而可证DE是⊙O的切线;
(2)在Rt△ABC中,运用勾股定理可将爱那个AC的长求出,运用切割线定理可将AE的长求出,根据△AED∽△ABF,可将BF的长求出.
试题解析:(1)连接OD,BC,OD与BC相交于点G,

∵D是弧BC的中点,
∴OD垂直平分BC,
∵AB为⊙O的直径,
∴AC⊥BC,
∴OD∥AE.
∵DE⊥AC,
∴OD⊥DE,
∵OD为⊙O的半径,
∴DE是⊙O的切线.
(2)由(1)知:OD⊥BC,AC⊥BC,DE⊥AC,
∴四边形DECG为矩形,
∴CG=DE=3,
∴BC=6.
∵⊙O的半径为5,
∴AB=10,
∴AC=

由(1)知:DE为⊙O的切线,
∴DE2=EC•EA,即32=(EA﹣8)EA,
解得:AE=9.
∵D为弧BC的中点,
∴∠EAD=∠FAB,
∵BF切⊙O于B,
∴∠FBA=90°.
又∵DE⊥AC于E,
∴∠E=90°,
∴∠FBA=∠E,
∴△AED∽△ABF,
∴

∴BF=

考点:1.切线的判定,2.勾股定理,3.圆周角定理,4.相似三角形的判定与性质.

练习册系列答案
相关题目