题目内容

如图,点P是双曲线y=-
12
x
(x<0)上一动点,过点P作x轴、y轴的垂线,分别交x轴、y轴于A、B两点,交双曲线y=
6
x
于E、F两点.
(1)图1中,四边形PEOF的面积S1=______;
(2)图2中,设P点坐标为(-4,3).
①判断EF与AB的位置关系,并证明你的结论;
②记S2=S△PEF-S△OEF,求S2
(1)四边形PEOF的面积S1=四边形PAOB的面积+△OAE的面积+△OBF的面积=|k1|+k2=k2+k1=12+6=18

(2)①EF与AB的位置关系为平行,即EFAB.
证明:如图,由题意可得:
A(-4,0),B(0,3),E(-4,-
3
2
),F(2,3),
∴PA=3,PE=3+
3
2
=
9
2
,PB=4,PF=4+2=6,
PB
PF
=
4
6
=
2
3
PA
PE
=
3
9
2
=
2
3

PB
PF
=
PA
PE

又∵∠APB=∠EPF,
∴△APB△EPF,
∴∠PAB=∠PEF,
∴EFAB;
②S2没有最小值,理由如下:
过E作EM⊥y轴于点M,过F作FN⊥x轴于点N,两线交于点Q,
由上知M(0,-
3
2
),N(2,0),Q(2,-
3
2
),
而S△EFQ=S△PEF
则S2=S△PEF-S△OEF=S△EFQ-S△OEF
=S△EOM+S△FON+S矩形OMQN
=12×
1
2
+6×
1
2
+2×
3
2

=6+3+3
=12.
故答案为12.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网