题目内容
【题目】若一个正整数能表示为两个正整数的平方差,则称这个正整数为“智慧数”(如3=22-12,16=52-32,则3和16是智慧数).已知按从小到大的顺序构成如下数列:3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,…则第2 013个“智慧数”是______.
【答案】2 687
【解析】解析:观察数的变化规律,可知全部“智慧数”从小到大可按每三个数分一组,从第2组开始每组的第一个数都是4的倍数,归纳可得,第n组的第一个数为4n(n≥2).因为2 013÷3=671,所以第2 013个“智慧数”是第671组中的第3个数,即为4×671+3=2 687.
点睛:找规律题需要记忆常见数列
1,2,3,4……n
1,3,5,7……2n-1
2,4,6,8……2n
2,4,8,16,32……
1,4,9,16,25……
2,6,12,20……n(n+1)
一般题目中的数列是利用常见数列变形而来,其中后一项比前一项多一个常数,是等差数列,列举找规律.后一项是前一项的固定倍数,则是等比数列,列举找规律.
【题型】填空题
【结束】
19
【题目】如图,郑某把一块边长为a m的正方形的土地租给李某种植,他对李某说:“我把你这块地的一边减少5 m,另一边增加5 m,继续租给你,你也没有吃亏,你看如何”.李某一听,觉得自己好像没有吃亏,就答应了.同学们,你们觉得李某有没有吃亏?请说明理由.
【答案】李某吃亏了,理由见解析.
【解析】试题分析:计算阴影部分面积和原正方形面积作比较.
试题解析:
解:李某吃亏了.理由如下:
∵(a+5)(a-5)=a2-25<a2,
∴李某少种了25 m2地,李某吃亏了.
练习册系列答案
相关题目