题目内容
【题目】如图,正比例函数的图像与反比例函数的图像交于、两点,过点作垂直轴于点,连结.若的面积为2.
(1)求的值;
(2)直接写出:①点坐标____________;点坐标_____________;②当时,的取值范围__________________;
(3)轴上是否存在一点,使为直角三角形?若存在,求出点的坐标;若不存在,请说明理由.
【答案】(1);(2)①,;②或;(3)存在,坐标为或,或.
【解析】
(1)首先根据反比例函数与正比例函数的图象特征,可知A、B两点关于原点对称,则O为线段AB的中点,故△BOC的面积等于△AOC的面积,都等于1,然后由反比例函数y=的比例系数k的几何意义,可知△AOC的面积等于 |k|,从而求出k的值;
(2)联立两函数即可求出坐标,根据图像可写出范围.
(3)设点坐标为连结、,再根据勾股定理解答即可.
解:(1)由题意知:点与点关于原点对称,点为中点,
所以
又
所以
所以
(2)已知两函数交于A,B两点,
故
①点坐标,点坐标
②根据图像可得即是反比例函数在正比例函数下方的范围:或.
(3)设点坐标为连结、;
∴
或
或
当或或时,
三角形为直角三角形,解得或或
所以点坐标为或,或
练习册系列答案
相关题目