题目内容
【题目】某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)
甲 | 乙 | |
进价(元/件) | 22 | 30 |
售价(元/件) | 29 | 40 |
(1)该超市购进甲、乙两种商品各多少件?
(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?
(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?
【答案】(1)甲种商品150件、乙种商品90件.(2)1950元.(3)8.5折
【解析】
(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据单价×数量=总价,即可得出关于x的一元一次方程,解之即可得出结论;
(2)根据总利润=单件利润×销售数量,列式计算即可求出结论;
(3)设第二次乙种商品是按原价打y折销售,根据总利润=单件利润×销售数量,即可得出关于y的一元一次方程,解之即可得出结论.
解:(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,
根据题意得:22x+30(x+15)=6000,
解得:x=150,
∴x+15=90.
答:该超市第一次购进甲种商品150件、乙种商品90件.
(2)(29﹣22)×150+(40﹣30)×90=1950(元).
答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润1950元.
(3)设第二次乙种商品是按原价打y折销售,
根据题意得:(29﹣22)×150+(40×﹣30)×90×3=1950+180,
解得:y=8.5.
答:第二次乙商品是按原价打8.5折销售.