题目内容
【题目】在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-1(m>0)与x轴的交点为A,B,顶点为C,将抛物线在A,C,B之间的部分记为图象E(A,B两点除外).
(1)求抛物线的顶点坐标.
(2)AB=6时,经过点C的直线y=kx+b(k≠0)与图象E有两个交点,结合函数的图象,求k的取值范围.
(3)若横、纵坐标都是整数的点叫整点.
①当m=1时,求线段AB上整点的个数;
②若抛物线在点A,C,B之间的图象E与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.
【答案】(1)C(1,-1). (2)<k<0,或0<k<.(3)3个或5个;<m≤ .
【解析】试题分析:(1)利用配方法将抛物线解析式变形为顶点式即可得到顶点坐标;(2)当AB=6时,抛物线与x轴的两个交点分别是(-2,0),(4,0),又因为顶点为(-1,1),当直线经过C与A,C与B时,分别解得k=± ,即可得k的取值范围;(3)①当时m=1,抛物线表达式为y=x2-2x,令y=0,解方程即可得到点A、点B的坐标,再数出线段上的整点数即可;②抛物线顶点为(1,-1),则指定区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;令抛物线解析式为0,,解方程得到用m表示的点、横坐标,根据题意得不等式解之即可.
试题解析:
⑴原抛物线解析式为y=mx2-2mx+m-1(m>0),提取公因式并配方得 ,所以该抛物线的顶点坐标为 (1,-1);
⑵AB=6时,抛物线与x轴的两个交点分别是(-2,0),(4,0),又因为顶点为(-1,1),当直线经过C与A,C与B时,分别解得k=,所以k的取值范围为<k<0,或0<k<.
⑶①当m=1时,抛物线表达式为y=x2-2x,因此A、B的坐标分别为(0,0)和(2,0),则线段AB上的整点有(0,0),(1,0),(2,0)共3个.
②抛物线顶点为(1,-1),则指定区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;
令y=mx2-2mx+m-1=0,得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,
进而得到2≤<3,所以<m≤ .