题目内容
【题目】甲船和乙船分别从A港和C港同时出发,各沿图中箭头所指的方向航行(如图所示).现已知甲、乙两船的速度分别是16海里/时和12海里/时,且A,C两港之间的距离为10海里.问:经过多长时间,甲船和乙船之间的距离最短?最短距离为多少?(注:题中的“距离”都是指直线距离,图中AC⊥CB.)
【答案】经过0.4 h,两船之间的距离最短,为6海里
【解析】试题分析:设甲、乙两船行驶的时间为t小时,则甲船行驶到AC上点D处,乙船行驶到CB上点E处,分别用t表示出CD、CE的距离,利用勾股定理求得DE的距离,进一步利用二次函数的性质探讨最短距离即可.
试题解析:
设经过t(h),甲船和乙船分别到达D,E处,如图所示:
则DE==
=
= (t>0).
当t=0.4时,400(t-0.4)2+36有最小值36,
∴当t=0.4时,A′B′==6(海里).
即经过0.4 h,两船之间的距离最短,为6海里.
练习册系列答案
相关题目
【题目】某商贸公司购进某种水果的成本为20元/千克,经过市场调研发现,这种水果在未来48天的售价p(元/千克)与时间t(天)之间的函数表达式为
p=
且其日销售量y(kg)与时间t(天)的关系如下表:
时间t(天) | 1 | 3 | 6 | 10 | 20 | 40 | … |
日销售量y(kg) | 118 | 114 | 108 | 100 | 80 | 40 | … |
(1)已知y与t之间的变化规律符合一次函数关系,试求第30天的日销售量是多少?
(2)问:哪一天的销售利润最大?最大日销售利润为多少?
(3)在实际销售的前24天中,公司决定每销售1 kg水果就捐赠n元利润(n<9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求n的取值范围.