题目内容

【题目】已知:正方形ABCD,E为平面内任意一点,连接DE,将线段DE绕点D顺时针旋转90°得到DG,连接EC,AG.
(1)当点E在正方形ABCD内部时, ①根依题意,在图1中补全图形;
②判断AG与CE的数量关系与位置关系并写出证明思路.

(2)当点B,D,G在一条直线时,若AD=4,DG=2 ,求CE的长.(可在备用图中画图)

【答案】
(1)解:当点E在正方形ABCD内部时,

①根依题意,补全图形如图1:

②AG=CE,AG⊥CE.

理由:

在正方形ABCD,

∴AD=CD,∠ADC=90°,

∵由DE绕着点D顺时针旋转90°得DG,

∴∠GDE=∠ADC=90°,GD=DE,

∴∠GDA=∠EDC

在△AGD和△CED中,

∴△AGD≌△CED,

∴AG=CE.

延长CE分别交AG、AD于点F、H,

由①中结论△AGD≌△CED,

∴∠GAD=∠ECD,

∵∠AHF=∠CHD,

∴∠AFH=∠HDC=90°,

∴AG⊥CE.


(2)解:①当点G在线段BD的延长线上时,如图3所示.

过G作GM⊥AD于M.

∵BD是正方形ABCD的对角线,

∴∠ADB=∠GDM=45°.

∵GM⊥AD,DG=2

∴MD=MG=2,

∴AM=AD+DM=6

在Rt△AMG中,由勾股定理,得

AG= =2

∴CE=AG=2

②当点G在线段BD上时,如图4所示,

过G作GM⊥AD于M.

∵BD是正方形ABCD的对角线,

∴∠ADG=45°

∵GM⊥AD,DG=2

∴MD=MG=2,

∴AM=AD﹣MG=2

在Rt△AMG中,由勾股定理,得

AG= =2

∴CE=AG=2

故CE的长为2 或2


【解析】(1)①根据题意补全图形,

②先判断出∠GDA=∠EDC,进而得出△AGD≌△CED,即可得出AG=CE,最后判断出∠AFH=∠HDC=90°即可得出结论;(2)分两种情况,①当点G在线段BD的延长线上时和②当点G在线段BD上时,构造直角三角形利用勾股定理即可得出结论.

【考点精析】解答此题的关键在于理解图形的旋转的相关知识,掌握每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.旋转的方向、角度、旋转中心是它的三要素.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网