题目内容
【题目】已知:正方形ABCD,E为平面内任意一点,连接DE,将线段DE绕点D顺时针旋转90°得到DG,连接EC,AG.
(1)当点E在正方形ABCD内部时, ①根依题意,在图1中补全图形;
②判断AG与CE的数量关系与位置关系并写出证明思路.
(2)当点B,D,G在一条直线时,若AD=4,DG=2 ,求CE的长.(可在备用图中画图)
【答案】
(1)解:当点E在正方形ABCD内部时,
①根依题意,补全图形如图1:
②AG=CE,AG⊥CE.
理由:
在正方形ABCD,
∴AD=CD,∠ADC=90°,
∵由DE绕着点D顺时针旋转90°得DG,
∴∠GDE=∠ADC=90°,GD=DE,
∴∠GDA=∠EDC
在△AGD和△CED中, ,
∴△AGD≌△CED,
∴AG=CE.
延长CE分别交AG、AD于点F、H,
由①中结论△AGD≌△CED,
∴∠GAD=∠ECD,
∵∠AHF=∠CHD,
∴∠AFH=∠HDC=90°,
∴AG⊥CE.
(2)解:①当点G在线段BD的延长线上时,如图3所示.
过G作GM⊥AD于M.
∵BD是正方形ABCD的对角线,
∴∠ADB=∠GDM=45°.
∵GM⊥AD,DG=2
∴MD=MG=2,
∴AM=AD+DM=6
在Rt△AMG中,由勾股定理,得
AG= =2 ,
∴CE=AG=2
②当点G在线段BD上时,如图4所示,
过G作GM⊥AD于M.
∵BD是正方形ABCD的对角线,
∴∠ADG=45°
∵GM⊥AD,DG=2
∴MD=MG=2,
∴AM=AD﹣MG=2
在Rt△AMG中,由勾股定理,得
AG= =2
∴CE=AG=2
故CE的长为2 或2 .
【解析】(1)①根据题意补全图形,
②先判断出∠GDA=∠EDC,进而得出△AGD≌△CED,即可得出AG=CE,最后判断出∠AFH=∠HDC=90°即可得出结论;(2)分两种情况,①当点G在线段BD的延长线上时和②当点G在线段BD上时,构造直角三角形利用勾股定理即可得出结论.
【考点精析】解答此题的关键在于理解图形的旋转的相关知识,掌握每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.旋转的方向、角度、旋转中心是它的三要素.