题目内容
【题目】在△ABC中,AB=AC=5,cos∠ABC= ,将△ABC绕点C顺时针旋转,得到△A1B1C.
(1)如图①,当点B1在线段BA延长线上时.①求证:BB1∥CA1;②求△AB1C的面积;
(2)如图②,点E是BC边的中点,点F为线段AB上的动点,在△ABC绕点C顺时针旋转过程中,点F的对应点是F1 , 求线段EF1长度的最大值与最小值的差.
【答案】
(1)解:①证明:∵AB=AC,B1C=BC,
∴∠AB1C=∠B,∠B=∠ACB,
∵∠AB1C=∠ACB(旋转角相等),
∴∠B1CA1=∠AB1C,
∴BB1∥CA1;
②过A作AF⊥BC于F,过C作CE⊥AB于E,如图①:
∵AB=AC,AF⊥BC,
∴BF=CF,
∵cos∠ABC= ,AB=5,
∴BF=3,
∴BC=6,
∴B1C=BC=6,
∵CE⊥AB,
∴BE=B1E= ,
∴BB1= ,CE= ,
∴AB1= ,
∴△AB1C的面积为:
(2)解:如图2,过C作CF⊥AB于F,以C为圆心CF为半径画圆交BC于F1,EF1有最小值,
此时在Rt△BFC中,CF= ,
∴CF1= ,
∴EF1的最小值为 ;
如图,以C为圆心BC为半径画圆交BC的延长线于F1,EF1有最大值;
此时EF1=EC+CF1=3+6=9,
∴线段EF1的最大值与最小值的差为
【解析】(1)由旋转角相等和等腰三角形的性质可证得;(2)此问题可转化为在两个圆上找两个点到E的距离最大、最小,画出两个圆观察即可.
练习册系列答案
相关题目