题目内容
【题目】如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限且OC=5,点B在x轴的正半轴上且OB=6,∠OAB=90°且OA=AB.
(1)求点A和点B的坐标;
(2)点P是线段OB上的一个动点(点P不与点O,B重合),过点P的直线l与y轴平行,直线l交边OA成边AB于点Q,交边OC或边CB于点R,设点P的横坐标为t,线段QR的长度为m,已知t=4时,直线l恰好过点C,当0<t<3时,求m关于t的函数关系式.
【答案】(1) A点坐标为(3,3) ,B点坐标为(6,0);(2) m=t(0<t<3).
【解析】
(1)由题意得到B点坐标为(6,0),根据等腰直角三角形的性质即可解决问题;
(2)首先求出直线OA、OB、OC、BC的解析式.进而求出P、Q的坐标即可解决问题.
(1)∵OB=6,
∴B点坐标为(6,0),
过点A作x轴的垂线AM,
∵∠OAB=90°且OA=AB,
∴△AOB为等腰直角三角形,
∴OM=BM=AM=OB=3,
∴A点坐标为(3,3);
(2)作CN⊥x轴于N,如图,
∵t=4时,直线l恰好过点C,
∴ON=4,
在Rt△OCN中,CN==3,
∴C点坐标为(4,3),
设直线OC的解析式为y=kx(k≠0),
把C(4,3)代入得4k=3,解得k=,
∴直线OC的解析式为y=x,
设直线OA的解析式为y=ax(a≠0),
把A(3,3)代入得3a=3,解得a=1,
∴直线OA的解析式为y=x
∵P(t,0)(0<t<3),
∴Q(t,t),R(t,t),
∴QR=t(t)=t,
即m=t(0<t<3).
【题目】某超市销售一种商品,成本每千克30元,规定每千克售价不低于成本,且不高于70元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:
售价x(元/千克) | 40 | 50 | 60 |
销售量y(千克) | 100 | 80 | 60 |
(1)求y与x之间的函数表达式;
(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入成本);
(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?