题目内容

如图,⊙O1、⊙O2相交于P、Q两点,其中⊙O1的半径r1=2,⊙O2的半径r2=.过点Q作CD⊥PQ,分别交⊙O1和⊙O2于点C、D,连接CP、DP,过点Q任作一直线AB交⊙O1和⊙O2于点A、B,连接AP、BP、AC、DB,且AC与DB的延长线交于点E.
(1)求证:
(2)若PQ=2,试求∠E度数.

【答案】分析:(1)求出PC、PD,证△PAB∽△PCD,推出=,代入求出即可;
(2)求出cos∠CPQ=,求出∠CPQ=60°,同理求出∠PDQ=45°,推出∠CAQ=∠CPQ=60°,∠PBQ=∠PDQ=45°,求出∠PBD=90°,求出∠ABE=45°根据三角形的内角和定理求出即可.
解答:(1)证明:∵⊙O1的半径r1=2,⊙O2的半径r2=
∴PC=4,PD=2
∵CD⊥PQ,
∴∠PQC=∠PQD=90°,
∴PC、PD分别是⊙O1、⊙O2的直径,
在⊙O1中,∠PAB=∠PCD,
在⊙O2中,∠PBA=∠PDC,
∴△PAB∽△PCD,
===
=

(2)解:在Rt△PCQ中,∵PC=2r1=4,PQ=2(已知),
∴cos∠CPQ=
∴∠CPQ=60°,
∵在Rt△PDQ中,PD=2r2=2,PQ=2,
∴sin∠PDQ=
∴∠PDQ=45°,
∴∠CAQ=∠CPQ=60°,∠PBQ=∠PDQ=45°,
又∵CD⊥PQ,
∴∠PQD=90°,
∴PD是⊙O2的直径,
∴∠PBD=90°,
∴∠ABE=90°-∠PBQ=45°
在△EAB中,∴∠E=180°-∠CAQ-∠ABE=75°,
答:∠E的度数是75°.
点评:本题考查了相似三角形的性质和判定,相切两圆的性质,三角形的内角和定理,解直角三角形,圆周角定理等知识点的应用,主要培养学生运用性质进行推理的能力,题目综合性比较强,是一道比较好的题目.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网