题目内容
【题目】(发现)x4﹣5x2+4=0是一个一元四次方程.
(探索)根据该方程的特点,通常用“换元法”解方程:
设x2=y,那么x4= ,于是原方程可变为 .
解得:y1=1,y2= .
当y=1时,x2=1,∴x=±1;
当y= 时,x2= ,∴x= ;
原方程有4个根,分别是 .
(应用)仿照上面的解题过程,求解方程:(x2﹣2x)2+(x2﹣2x)﹣6=0
【答案】:(探索)y2,y2﹣5y+4=0,4,4,4,±2,±1,±2;(应用)x=1±.
【解析】
(探索)利用换元的思想求出所求方程的解即可.
(应用)利用换元的思想求出所求方程的解即可.
解:(探索)设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0.
解得:y1=1,y2=4.
当y=1时,x2=1,∴x=±1;
当y=4时,x2=4,∴x=±2;
原方程有4个根,分别是±1,±2.
故答案为:y2,y2﹣5y+4=0,4,4,4,±2,±1,±2,
(应用)(x22x)2+(x22x)6=0,
设y=x22x,方程变形得:y2+y6=0,
解得:y=2或y=3,
可得x22x=2或x22x=3(无解),
解得:x=1±.
【题目】2018年非洲猪瘟疫情暴发后,专家预测,2019年我市猪肉售价将逐月上涨,每千克猪肉的售价y1(元)与月份x(1≤x≤12,且x为整数)之间满足一次函数关系,如下表所示.每千克猪肉的成本y2(元)与月份x(1≤x≤12,且x为整数)之间满足二次函数关系,且3月份每千克猪肉的成本全年最低,为9元,如图所示.
月份x | … | 3 | 4 | 5 | 6 | … |
售价y1/元 | … | 12 | 14 | 16 | 18 | … |
(1)求y1与x之间的函数关系式.
(2)求y2与x之间的函数关系式.
(3)设销售每千克猪肉所获得的利润为w(元),求w与x之间的函数关系式,哪个月份销售每千克猪肉所第获得的利润最大?最大利润是多少元?