题目内容
【题目】某书店销售儿童书刊,一天可出售20套,每套盈利40元.为了扩大销售,增加盈利,尽快减少库存,书店决定采取降价措施.若一套书每降价1元,平均每天可多出售2套.设每套降价x元,书店一天可获利润y元.
(1)求y关于x的函数解析式.
(2)若要书店每天盈利1200元,则需降价多少元?
(3)当每套书降价多少元时,书店可获最大利润?最大利润为多少?
【答案】(1);(2)降价20元;(3)x=15时,y取最大值1250.
【解析】
(1)根据题意设出每天降价x元以后,准确表示出每天书刊的销售量,列出利润y关于降价x的函数关系式;
(2)根据题意列出关于x的一元二次方程,通过解方程即可解决问题;
(3)运用函数的性质即可解决.
解:(1)设每套书降价x元时,所获利润为y元,
则每天可出售20+4×=20+2x套;
由题意得:y=(40-x)(20+2x)
=-2x2+80x-20x+800
=-2x2+60x+800;
(2)∵y=-2x2+60x+800=-2(x-15)2+1250
当y=1200时,-2(x-15)2+1250=1200,
整理得:(x-15)2=25,
解得x=10或20但为了尽快减少库存,所以只取x=20,
答:若每天盈利1200元,为了尽快减少库存,则应降价20元;
(3)∵y=-2(x-15)2+1250=1200
则当x=15时,y取得最大值1250;
即当将价15元时,该书店可获得最大利润1250元.
练习册系列答案
相关题目