题目内容

【题目】如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;证明:

(1)CF=EB.
(2)AB=AF+2EB.

【答案】
(1)证明:∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,

∴DE=DC,

在Rt△CDF和Rt△EDB中,

∴Rt△CDF≌Rt△EDB(HL).

∴CF=EB


(2)证明:∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,

∴CD=DE.

在△ADC与△ADE中,

∴△ADC≌△ADE(HL),

∴AC=AE,

∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.


【解析】(1)根据角平分线的性质“角的平分线上的点到角的两边的距离相等”,可得点D到AB的距离=点D到AC的距离即CD=DE.再根据Rt△CDF≌Rt△EDB,得CF=EB;(2)利用角平分线性质证明∴△ADC≌△ADE,AC=AE,再将线段AB进行转化.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网