题目内容

【题目】(1)在等边三角形ABC中,

如图①,D,E分别是边AC,AB上的点且AE=CD,BDEC交于点F,则∠BFE的度数是   度;

如图②,D,E分别是边AC,BA延长线上的点且AE=CD,BDEC的延长线交于点F,此时∠BFE的度数是   度;

(2)如图,在△ABC中,AC=BC,∠ACB是锐角,点OAC边的垂直平分线与BC的交点,点D,E分别在AC,OA的延长线上,AE=CD,BDEC的延长线交于点F,若∠ACB=α,求∠BFE的大小.(用含α的代数式表示).

【答案】(1)①60°;②60°;(2)∠BFE =α.

【解析】

(1)①先证明△ACE≌△CBD得到∠ACE=∠CBD,再由三角形外角和定理可得∠BFE=∠CBD+∠BCF;②先证明△ACE≌△CBD∠ACE=∠CBD=∠DCF,再由三角形外角和定理可得∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA;

(2)证明△AEC≌△CDB得到∠E=∠D,∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.

(1)如图中,

∵△ABC是等边三角形,

∴AC=CB,∠A=∠BCD=60°,

∵AE=CD,

∴△ACE≌△CBD,

∴∠ACE=∠CBD,

∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.

故答案为60.

(2)如图中,

∵△ABC是等边三角形,

∴AC=CB,∠A=∠BCD=60°,

∴∠CAE=∠BCD=′120°

∵AE=CD,

∴△ACE≌△CBD,

∴∠ACE=∠CBD=∠DCF,

∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.

故答案为60.

(3)如图中,

OAC边的垂直平分线与BC的交点,

∴OC=OA,

∴∠EAC=∠DCB=α,

∵AC=BC,AE=CD,

∴△AEC≌△CDB,

∴∠E=∠D,

∴∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网