题目内容

【题目】如图,PA为⊙O的切线,A为切点,直线PO交⊙O于点E,F过点A作PO的垂线AB垂足为D,交⊙O于点B,延长BO与⊙O交与点C,连接AC,BF.

(1)求证:PB与⊙O相切;
(2)是探究线段EF,OD,OP之间的数量关系,并加以证明;
(3)若tan∠F= ,求cos∠ACB的值.

【答案】
(1)解:如图,

连接OA,
∵PD⊥AB,
∴OP垂直平分AB,
∴PA=PB,OA=OB,
∴△OAP≌△OBP,
∴∠OAP=∠OBP,
∵PA为⊙O的切线,
∴∠OAP=90°,
∴∠OQP=90°,
∵点B在⊙O上,
∴BP与⊙O相切
(2)解:EF,OD,OP间的数量关系为4EF2=OD×OP,
理由:∵∠OAP=90°,AD⊥OP,
∴OA2=OD×OP,
∵OA= EF,
∴OD×OP= EF2
∴4EF2=OD×OP
(3)解:∵tanF= ,设BD=a,
∴FD=2a,AD=a,DE= a,EF= a,
∴OD= a,
∴AC= a,
∴cos∠ACB=
【解析】考查对圆的认识,正多边形和圆(内角,外角,中心角,边心距,边长,周长,面积的计算),弧长的计算 ,扇形面积的计算等考点的理解.
小题1 连接OA,利用垂径定理得到D为AB的中点,即OP垂直平分AB,利用SSS得出三角形AOP与三角形BOP全等,由PA为圆的切线,得到OA垂直于AP,利用全等三角形的对应角相等及垂直的定义得到OB垂直于BP,即PB为圆O的切线.
小题2 由一对直角相等,一对公共角,得出三角形AOD与三角形OAP相似,由相似得比例,列出关系式,由OA为EF的一半,等量代换即可得证.
小题3 根据勾股定理易求BC的长;最后由余弦三角函数的定义求解.

练习册系列答案
相关题目

【题目】阅读下列例题的解题过程,并完成相关问题

例:如图,在四边形ABCD中,ADBC,∠B90°AB8 cmAD12cmBC18cm,点P从点A出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以2cm/s的速度向点B运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.从运动开始,使PQCDPQCD,分别经过多长时间?为什么?

解:设经过ts时,PQCDPQCD,此时四边形PQCD为平行四边形.

PD=(12tcmCQ2t cm

12t2t.∴t4

∴当t4时,PQCD,且PQCD

设经过ts时,PQCD,分别过点PDBC边的垂线PEDF,垂足分别为EF

CFEQ时,四边形PQCD为梯形(腰相等)或者平行四边形.

∵∠B=∠A=∠DFB90°

∴四边形ABFD是矩形.∴ADBF

AD12 cmBC18 cm

CFBCBF6 cm

当四边形PQCD为梯形(腰相等)时,

PD2BCAD)=CQ

∴(12t)+122t.∴t8

∴当t8时,PQCD

当四边形PQCD为平行四边形时,由知当t4时,PQCD

综上,当t4时,PQCD;当t4t8时,PQCD

问题1:在整个运动过程中是否存在t值,使得四边形PQCD是菱形?若存在,请求出t值;若不存在,请说明理由.

问题2:从运动开始,当t取何值时,四边形PQBA是矩形?

问题3:在整个运动过程中是否存在t值,使得四边形PQBA是正方形?若存在,请求出t值;若不存在,请说明理由.

问题4:是否存在t,使得△DQC是等腰三角形?若存在,请求出t值;若不存在,请说明理由.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网