题目内容
【题目】如图,已知∠BAC=30°,把△ABC绕着点A顺时针旋转到△ADE的位置,使得点D,A,C在同一直线上.
(1)△ABC旋转了多少度?
(2)连接CE,试判断△AEC的形状;
(3)求 ∠AEC的度数.
【答案】(1)150°;(2)详见解析;(3)15°
【解析】
(1)根据旋转的性质,利用补角性质即可解题;
(2)根据旋转后的对应边相等即可解题;
(3)利用外角性质即可解题.
解:(1)∵点D,A,C在同一直线上,
∴∠BAD=180°-∠BAC=180°-30°=150°,
∴△ABC旋转了150°;
(2)根据旋转的性质,可知AC=AE,
∴△AEC是等腰三角形;
(3)根据旋转的性质可知,∠CAE=∠BAD=150°,AC=AE,
∴∠AEC=∠ACE=(180°-∠CAE)÷2=(180°-150°)÷2=15°.
练习册系列答案
相关题目