题目内容

【题目】如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于D.

(1)求证:ADC∽△CDB;

(2)若AC=2,AB=CD,求⊙O半径.

【答案】(1)见解析;(2)

【解析】分析: (1)首先连接CO,根据CD与⊙O相切于点C,可得:∠OCD=90°;然后根据AB是圆O的直径,可得:∠ACB=90°,据此判断出∠CAD=∠BCD,即可推得△ADC∽△CDB.

(2)首先设CDx,则AB=32x,OC=OB=34x,用x表示出OD、BD;然后根据△ADC∽△CDB,可得:ACCB=CDBD,据此求出CB的值是多少,即可求出⊙O半径是多少.

详解:

(1)证明:如图,连接CO,

CD与⊙O相切于点C,

∴∠OCD=90°,

AB是圆O的直径,

∴∠ACB=90°,

∴∠ACO=BCD,

∵∠ACO=CAD,

∴∠CAD=BCD,

ADCCDB中,

∴△ADC∽△CDB.

(2)解:设CDx,

AB=x,OC=OB=x,

∵∠OCD=90°,

OD===x,

BD=OD﹣OB=x﹣x=x,

由(1)知,ADC∽△CDB,

=

解得CB=1,

AB==

∴⊙O半径是

点睛: 此题主要考查了切线的性质和应用,以及勾股定理的应用,要熟练掌握.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网