题目内容
【题目】如图,点C是⊙O优弧ACB上的中点,弦AB=6cm,E为OC上任意一点,动点F从点A出发,以每秒1cm的速度沿AB方向响点B匀速运动,若y=AE-EF,则y与动点F的运动时间x(0≤x≤6 )秒的函数关系式为 .
【答案】y=x2-6x
【解析】
首先延长CO交AB于G,根据垂径定理的知识,可得CO⊥AB,并可求得AG的值,由勾股定理可得AE2=AG2+EG2,EF2=FG2+EG2,即可求得y=AG2-FG2,即可求得函数关系式.
解:延长CO交AB于G,
∵点C是⊙O优弧ACB上的中点,
∴CO⊥AB,AG=AB=×6=3(cm),
∴AE2=AG2+EG2,EF2=FG2+EG2,
当0≤x≤3时,AF=xcm,FG=(3-x)cm,
∴y=AE2-EF2=AG2+EG2-FG2-EG2=AG2-FG2=9-(3-x)2=6x-x2;
当3<x≤6时,AF=xcm,FG=(x-3)cm,
∴y=AE2-EF2=AG2+EG2-FG2-EG2=AG2-FG2=9-(x-3)2=6x-x2.
故答案为:y=6x-x2.
练习册系列答案
相关题目
【题目】王勇和李明两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了30次实验,实验的结果如下:
朝上的点数 | 1 | 2 | 3 | 4 | 5 | 6 |
出现的次数 | 2 | 5 | 6 | 4 | 10 | 3 |
(1)分别计算这30次实验中“3点朝上”的频率和“5点朝上”的频率;
(2)王勇说:“根据以上实验可以得出结论:由于5点朝上的频率最大,所以一次实验中出现5点朝上的概率最大”;李明说:“如果投掷300次,那么出现6点朝上的次数正好是30次”.试分别说明王勇和李明的说法正确吗?并简述理由;
(3)现王勇和李明各投掷一枚骰子,请用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.