题目内容

如图,在平行四边形ABCD纸片中,AC⊥AB,AC与BD相交于O,将纸△ABC沿对角线AC翻转180°,得到△AB′C,
(1)问以A、C、D、B′为顶点的四边形是什么形状的四边形?证明你的结论;
(2)若四边形ABCD的面积为20cm2,求翻转后纸片重叠部分的面积(即△ACE的面积).
分析:(1)以A、C、D、B′为顶点的四边形是矩形,根据平行四边形的性质以及已知条件求证出四边形ACDB′是平行四边形,进而求出四边形ACDB′是矩形;
(2)根据矩形的性质以及平行四边形的性质求出△ACD的面积,因为△AEC和△EDC可以看作是等底等高的三角形,所以S△AEC=
1
2
S△ACD=5cm2
解答:(1)以A、C、D、B′为顶点的四边形是矩形,
理由如下:四边形ABCD是平行四边形.
∴AB平行且等于CD.
∵△AB′C是由△ABC翻折得到的,AB⊥AC,
∴AB=AB′,点A、B、B′在同一条直线上.
∴AB′∥CD,
∴四边形ACDB′是平行四边形.
∵B′C=BC=AD.
∴四边形ACDB′是矩形;
(2)由四边形ACDB′是矩形,得AE=DE.
∵S?ABCD=20cm2
∴S△ACD=10cm2
∴S△AEC=
1
2
S△ACD=5cm2
点评:本题综合应用平行四边形、三角形面积公式、平行四边形中图形的面积关系,解题的关键是发现△ACE的面积为矩形面积的四分之一.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网