题目内容
【题目】阅读下列材料,解决问题:
学习了勾股定理后我们知道:直角三角形两条直角边的平方和等于斜边的平方.根据勾股定理我们定义:如图①,点M、N是线段AB上两点,如果线段AM、MN、NB能构成直角三角形,则称点M、N是线段AB的勾股点
解决问题
(1)在图①中,如果AM=2,MN=3,则NB= .
(2)如图②,已知点C是线段AB上一定点(AC<BC),在线段AB上求作一点D,使得C、D是线段AB的勾股点.李玉同学是这样做的:过点C作直线GH⊥AB,在GH上截取CE=AC,连接BE,作BE的垂直平分线交AB于点D,则C、D是线段AB的勾股点你认为李玉同学的做法对吗?请说明理由
(3)如图③,DE是△ABC的中位线,M、N是AB边的勾股点(AM<MN<NB),连接CM、CN分别交DE于点G、H求证:G、H是线段DE的勾股点.
【答案】(1)或
;(2)对,理由见解析;(3)见解析
【解析】
(1)分两种情形分别求解即可解决问题.
(2)想办法证明DB2=AC2+CD2即可.
(3)利用三角形的中位线定理以及勾股定理证明EH2=GH2+DG2即可.
解:(1)当BN是斜边时,BN==
.
当MN是斜边时,BN==
,
故答案为或
.
(2)如图②中,连接DE.
∵点D在线段BE的垂直平分线上,
∴DE=DB,
∵GH⊥BC,
∴∠ECD=90°,
∴DE2=EC2+CD2,
∵AC=CE,DE=DB,
∴DB2=AC2+CD2,
∴C、D是线段AB的勾股点.
(3)如图3中,
∵CD=DA,CE=EB,
∴DE∥AB,
∴CG=GM,CH=HN,
∴DG=AM,GH=
MN,EH=
BN,
∵BN2=MN2+AM2,
∴BN2=
MN2+
AM2,
∴(BN)2=(
MN)2+(
AM)2,
∴EH2=GH2+DG2,
∴G、H是线段DE的勾股点.
![](http://thumb.zyjl.cn/images/loading.gif)