题目内容
【题目】如图,是正方形的边上的动点,是边延长线上的一点,且,,设,.
(1)当是等边三角形时,求的长;
(2)求与的函数解析式,并写出它的定义域;
(3)把沿着直线翻折,点落在点处,试探索:能否为等腰三角形?如果能,请求出的长;如果不能,请说明理由.
【答案】(1);(2);(3)答案见解析.
【解析】
(1)当△BEF是等边三角形时,有∠ABE=∠ABC-∠EBC=90°-60°=30°,则可解Rt△ABE,求得BF即BE的长.
(2)作EG⊥BF,垂足为点G,则四边形AEGB是矩形,在Rt△EGF中,由勾股定理知,EF2=(BF-BG)2+EG2.即y2=(y-x)2+122.故可求得y与x的关系.
(3)当把△ABE沿着直线BE翻折,点A落在点A'处,应有∠BA'F=∠BA'E=∠A=90°,若△A'BF成为等腰三角形,必须使A'B=A'F=AB=12,有FA′=EF-A′E=y-x=12,故可由(2)得到的y与x的关系式建立方程组求得AE的值.
解:(1)当是等边三角形时,,
∵,
∴,
∴;
(2)作,垂足为点,
根据题意,得,,.
∴.
∴所求的函数解析式为;
(3)∵,
∴点落在上,
∴,,
∴要使成为等腰三角形,必须使.
而,,
∴,由(2)关系式可得:,
整理得,
解得,
经检验:都原方程的根,
但不符合题意,舍去,
所以当时,为等要三角形.
练习册系列答案
相关题目