题目内容
【题目】如图,矩形ABCD中,AC=2AB,将矩形ABCD绕点A旋转得到矩形AB′C′D′,使点B的对应点B'落在AC上,B'C'交AD于点E,在B'C′上取点F,使B'F=AB.
(1)求证:AE=C′E.
(2)求∠FBB'的度数.
(3)已知AB=2,求BF的长.
【答案】(1)证明见解析(2)∠FBB′=15°;(3)+
【解析】
(1)在直角三角形ABC中,由AC=2AB,得到∠ACB=30°,再由旋转的性质得到∠B′AC=∠BAC=60°,利用等角对等边即可得证;
(2)由(1)得到△ABB′为等边三角形,进而得到∠BB′F=150°,BB′=B′F,再由等边对等角,即可求出所求角度数;
(3)连接AF,过A作AM⊥BF,可得△AB′F是等腰直角三角形,△AB′B为等边三角形,分别利用三角函数定义求出MF与AM,根据AM=BM,即BM+MF=BF即可求出.
(1)∵在Rt△ABC中,AC=2AB,∴∠ACB=∠AC′B′=30°,∠BAC=60°,由旋转可得:AB′=AB,∠B′AC=∠BAC=60°,∴∠EAC′=∠AC′B′=30°,∴AE=C′E;
(2)由(1)得到△ABB′为等边三角形,∴∠AB′B=60°,AB′=AB,∴∠BB′F=150°,BB′=B′F,∴∠FBB′=15°;
(3)连接AF,过A作AM⊥BF,由(2)可得△AB′F是等腰直角三角形,△AB′B为等边三角形,∴∠AFB′=45°,∠AFM=30°,∠ABB′=60°.
∵∠FBB′=15°,∴∠ABF=45°.在Rt△AMF中,AM=BM=ABcos∠ABM=2×=.在Rt△AMF中,MF===,则BF=+.
练习册系列答案
相关题目