题目内容
【题目】如图所示,已知抛物线与一次函数的图象相交于,两点,点是抛物线上不与,重合的一个动点.
(1)请求出,,的值;
(2)当点在直线上方时,过点作轴的平行线交直线于点,设点的横坐标为,的长度为,求出关于的解析式;
(3)在(2)的基础上,设面积为,求出关于的解析式,并求出当取何值时,取最大值,最大值是多少?
【答案】(1),,;(2);(3)当时,取最大值,最大值为
【解析】
(1)把A、B坐标分别代入抛物线和一次函数解析式即可求出a、b、k的值;(2)根据a、b、k的值可得抛物线和直线AB的解析式,根据P点横坐标为m可用m表示P、C两点坐标,根据两点间距离公式即可得L与m的关系式;(3)如图,作AD⊥PC于D,BE⊥PC于E,根据,可用m表示出S,配方求出二次函数的最值即可得答案.
(1)∵点A(-1,-1)在抛物线图象上,
∴,
解得:,
∵点A(-1,-1)、B(2,-4)在一次函数的图象上,
∴,
解得,
∴,,
(2)∵,,a=-1,
∴直线的解析式为,抛物线的解析式为,
∵点P在抛物线上,点C在直线AB上,点P横坐标为m,PC//y轴,
∴,,
∴关于的解析式:,
(3)如图,作AD⊥PC于D,BE⊥PC于E,
∴AD=m+1,BE=2-m,
∵,
∴PC·AD+PC·BE
配方得:,
∴当时,取最大值,最大值为
练习册系列答案
相关题目
【题目】已知二次函数,函数与自变量的部分对应值如下表:
… | —4 | —3 | —2 | —1 | 0 | … | |
… | 3 | —2 | —5 | —6 | —5 | … |
则下列判断中正确的是( )
A. 抛物线开口向下 B. 抛物线与轴交于正半轴
C. 方程的正根在1与2之间 D. 当时的函数值比时的函数值大