题目内容
【题目】如图在平面直角坐标系xOy中,O为坐标原点,二次函数y=x2+bx+c的图象经过点A(3,0)、点B(0,3),顶点为M.
(1)求该二次函数的解析式;
(2)求∠OBM的正切值.
【答案】(1)y=x2﹣4x+3;(2)
【解析】分析:(1)先把A、B两点的坐标代入y=x2+bx+c得到关于b、c的方程组,然后解方程组求出b、c即可得到抛物线解析式;
(2)作MH⊥y轴于H,如图,先把抛物线解析式配成顶点式得到M点坐标,然后根据正切的定义求∠HBM的正切值即可.
详解:(1)把A(3,0)、B(0,3)代入y=x2+bx+c得:,
解得:,所以y=x2﹣4x+3;
(2)作MH⊥y轴于H,如图,
∵y=x2﹣4x+3=(x﹣2)2﹣1,∴M(2,﹣1).
∵MH⊥y轴,∴H(0,﹣1).
在Rt△BMH中,tan∠HBM==,即∠OBM的正切值为.
练习册系列答案
相关题目
【题目】小方家住户型呈长方形,平面图如下(单位:米),现准备铺设地面,三间卧室铺设木地板,其它区城铺设地砖.
(1)求a的值.
(2)铺设地面需要木地板和地砖各多少平方米(用含的代数式表示)?
(3)按市场价格,木地板单价为300元/平方米,地砖单价为100元/平方米,装修公司有两种活动方案,如表:
活动方案 | 木地板价格 | 地砖价格 | 总安装费 |
A | 8折 | 8.5折 | 2000元 |
B | 9折 | 8.5折 | 免收 |
已知卧室2的面积是21平方米,则小方家应选择哪种活动,使铺设地面的总费用(包括材料费及安装费)更低?