题目内容

【题目】如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,BE=AF.

(1)求证:四边形ADEF是平行四边形;
(2)若∠ABC=60°,BD=4,求平行四边形ADEF的面积.

【答案】
(1)证明:∵BD是△ABC的角平分线,

∴∠ABD=∠DBE,

∵DE∥AB,

∴∠ABD=∠BDE,

∴∠DBE=∠BDE,

∴BE=DE;

∵BE=AF,

∴AF=DE;

∴四边形ADEF是平行四边形


(2)解:过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,

∵∠ABC=60°,BD是∠ABC的平分线,

∴∠ABD=∠EBD=30°,

∴DG= BD= ×4=2,

∵BE=DE,

∴BH=DH=2,

∴BE= =

∴DE=

∴四边形ADEF的面积为:DEDG=


【解析】(1)根据BD是△ABC的角平分线,DE∥AB,证得△BDE是等腰三角形,且BE=DE;又由BE=AF,可得DE=AF,即可证得所求结论;
(2)先过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,由∠ABC=60°,BD是∠ABC的平分线,可求得DG的长,继而求得DE的长,则可求得四边形ADEF的面积.
【考点精析】掌握平行四边形的判定与性质是解答本题的根本,需要知道若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网