题目内容
【题目】已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒时其中一个四边形为平行四边形?
【答案】当8秒或10秒时,其中一个四边形是平行四边形.
【解析】试题分析:若四边形PDCQ或四边形APQB是平行四边形,那么QD=CQ或AP=BQ或PD=BQ,根据这个结论列出方程就可以求出时间.
试题解析:设P,Q同时出发t秒后四边形PDCQ或四边形APQB是平行四边形,根据已知得到AP=t,PD=24t,CQ=2t,BQ=302t.
(1)若四边形PDCQ是平行四边形,则PD=CQ,
∴24t=2t,
∴t=8,
∴8秒后四边形PDCQ是平行四边形;
(2)若四边形APQB是平行四边形,则AP=BQ,
∴t=302t,
∴t=10,
∴10秒后四边形APQB是平行四边形.
∴出发后8秒或10秒其中一个是平行四边形.
【题目】探索n×n的正方形钉子板上(n是钉子板每边上的钉子数,每边上相邻钉子间的距离为1),连接任意两个钉子所得到的不同长度值的线段种数:
当n=2时,钉子板上所连不同线段的长度值只有1与,所以不同长度值的线段只有2种,若用S表示不同长度值的线段种数,则S=2;
当n=3时,钉子板上所连不同线段的长度值只有1, ,2, ,2五种,比n=2时增加了3种,即S=2+3=5.
(1)观察图形,填写下表:
钉子数(n×n) | S值 |
2×2 | 2 |
3×3 | 2+3 |
4×4 | 2+3+(____) |
5×5 | (________) |
(2)写出(n-1)×(n-1)和n×n的两个钉子板上,不同长度值的线段种数之间的关系;(用式子或语言表述均可).
(3)对n×n的钉子板,写出用n表示S的代数式.