题目内容

△ABC中,∠ACB=90°,AB=4,⊙C的半径长是2,当∠A=30°时,⊙C与直线AB的位置关系是______;当∠A=45°时,⊙C与直线AB的位置关系是______.
根据题意画出图形,如图所示:
当∠A=30°,

过C作CD⊥AB,交AB于点D.
在Rt△ACD中,∵AB=4,∠A=30°,
∴BC=
1
2
AB=2,
∴AC=
AB2-BC2
=2
3

∴CD=
1
2
AC=
3

又∵圆C的半径为2,则
3
<2,
∴CD<R,
∴则⊙C与AB的位置关系是相交;
故答案为:相交;

当∠A=45°时,

过C作CD⊥AB,交AB于点D.
在Rt△ACD中,∵AB=4,∠A=45°,
∴AB=AC,
∴CD=
1
2
AB=2,
又∵圆C的半径为2,则CD=R,
∴则⊙C与AB的位置关系是相切.
故答案为:相切.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网