题目内容
如图,⊙Ol和⊙O2内切于点P,过点P的直线交⊙Ol于点D,交⊙O2于点E,DA与⊙O2相切,切点为C.
(1)求证:PC平分∠APD;
(2)求证:PD•PA=PC2+AC•DC;
(3)若PE=3,PA=6,求PC的长.
(1)求证:PC平分∠APD;
(2)求证:PD•PA=PC2+AC•DC;
(3)若PE=3,PA=6,求PC的长.
(1)过P作两圆的公切线PT,
根据弦切角定理得:∠PCD=∠PBC
∠PCB=∠PDC
∴∠DPC=∠APC,
∴PC平分∠APD;
(2)∵AC•DC=PC•CF,
∴PC2+AC•DC=PC2+PC•CF=PC(PC+CF)=PC•PF.
∵△PDC∽△PFA,
∴PC•PF=PD•PA,
∴PD•PA=PC2+AC•DC;
(3)∵△PCA∽△PEC,
∴
=
,
即PC2=PA•PE,
∵PE=3,PA=6,
∴PC=3
.
根据弦切角定理得:∠PCD=∠PBC
∠PCB=∠PDC
∴∠DPC=∠APC,
∴PC平分∠APD;
(2)∵AC•DC=PC•CF,
∴PC2+AC•DC=PC2+PC•CF=PC(PC+CF)=PC•PF.
∵△PDC∽△PFA,
∴PC•PF=PD•PA,
∴PD•PA=PC2+AC•DC;
(3)∵△PCA∽△PEC,
∴
PC |
PE |
PA |
PC |
即PC2=PA•PE,
∵PE=3,PA=6,
∴PC=3
2 |
练习册系列答案
相关题目