题目内容
【题目】如图,AB为⊙O的内接正多边形的一边,已知∠OAB=70°,则这个正多边形的内角和为 .
【答案】1260°
【解析】解:∵OA=OB, ∴∠OAB=∠OBA=70°,
∴∠AOB=40°,
∵AB为⊙O的内接正多边形的一边,
∴正多边形的边数= =9,
∴这个正多边形的内角和=(9﹣2)×180°=1260°,
所以答案是:1260°.
【考点精析】解答此题的关键在于理解多边形内角与外角的相关知识,掌握多边形的内角和定理:n边形的内角和等于(n-2)180°.多边形的外角和定理:任意多边形的外角和等于360°,以及对正多边形和圆的理解,了解圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角;圆的外切四边形的两组对边的和相等.
练习册系列答案
相关题目