题目内容
【题目】甲、乙两车间同时开始加工一批服装.从开始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示,则下列结论错误的是( )
A.甲车间每小时加工服装80件
B.这批服装的总件数为1140件
C.乙车间每小时加工服装为60件
D.乙车间维修设备用了4小时
【答案】D
【解析】
根据图象确定两个车间的生产速度,再由乙车间剩余工作量推得复工后生产时间,得到乙车间加工零件数量y与x之间的函数关系式即可.
由图象可知,甲车间每小时加工零件个数为720÷9=80个,则A正确;
由题意总零件个数为720+420=1140个,则B正确;
乙车间生产速度为120÷2=60个/时,则C正确;
乙车间复工后生产时间为(420﹣120)÷60=5小时,故乙车间维修设备时间为9﹣5﹣2=2小时,则D错误.
故选D.
练习册系列答案
相关题目
【题目】某“兴趣小组”根据学习函数的经验,对函数y=x+的图象和性质进行了探究,探究过程如下,请补充完整.
(1)函数y=x+的自变量取值范围是________;
(2)下表是x与y的几组对应值:
x | … | -3 | -2 | -1 | - | - | 1 | 2 | 3 | … | ||
y | … | - | - | -2 | - | - | 2 | m | … |
则表中m的值为________;
(3)根据表中数据,在如图所示平面直角坐标xOy中描点,并画出函数的一部分,请画出
(4)观察函数图象:写出该函数的一条性质
(5)进一步探究发现:函数y=x+图象与直线y=-2只有一交点,所以方程x+=-2只有1个实数根,若方程x+=k(x<0)有两个不相等的实数根,则k的取值范围是 ________.