题目内容
【题目】如图,小明利用所学数学知识测量某建筑物BC高度,采用了如下的方法:小明从与某建筑物底端B在同一水平线上的A点出发,先沿斜坡AD行走260米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C的仰角为72°,建筑物底端B的俯角为63°,其中点A、B、C、D、E在同一平面内,斜坡AD的坡度i=1:2.4,根据小明的测量数据,计算得出建筑物BC的高度约为( )米(计算结果精DE确到0.1米,参考数据:sin72°≈0.95,tan72°≈3.08,sin63°≈0.89,tan63°≈1.96)
A.157.1 B.157.4 C.257.4 D.257.1
【答案】D
【解析】
如图作DH⊥AB于H,延长DE交BC于F.则四边形DHBF是矩形,在Rt△ADH中求出DH,再在Rt△EFB中求出EF,在Rt△EFC中求出CF即可解决问题
如图作DH⊥AB于H,延长DE交BC于F.
在Rt△ADH中,∵AD=260,DH:AH=1:2.4,
∴DH=100(m),
∵四边形DHBF是矩形,
∴BF=DH=100,
在Rt△EFB中,tan63°=,
∴EF=,
在Rt△EFC中,FC=EFtan72°,
∴CF=×3.08≈157.1,
∴BC=BF+CF=257.1(m).
故选D.
【题目】九年级某数学小组在学完《直角三角形的边角关系》这章后,决定用所学的知识设计遮阳篷(要求:遮阳篷既能最大限度地遮挡夏天炎热的阳光,又能最大限度地使冬天温暖的阳光射入室内).他们制定了设计方案,并利用课余时间完成了调查和实地测量.调查和测量项目及结果如下表:
项目 | 内容 | |
课题 | 设计遮阳篷 | |
测量示意图 | 如图,设计了垂直于墙面AC的遮阳篷CD,AB表示窗户的高度.榆次区一年中,夏至这一天的正午时刻,太阳光线DA与遮阳篷CD的夹角∠ADC最大;冬至这一天的正午时刻,太阳光线DB与遮阳篷CD的夹角∠CDB最小. | |
调查数据 | ||
测量数据 | ||
… | … |
根据上述方案及数据,求遮阳篷的长.
(结果精确到,参考数据:,,,,,)