题目内容
【题目】如图,已知E、F分别是平行四边形ABCD的边AB、CD上的两点,且∠CBF=∠ADE.(1)求证:△ADE≌△CBF;
(2)判定四边形DEBF是否是平行四边形?
【答案】(1)见解析(2)是
【解析】分析:(1)利用平行四边形ABCD的对角相等,对边相等的性质推知∠A=∠C,AD=BC;然后根据全等三角形的判定定理AAS证得结论;
(2)由“对边平行且相等的四边形是平行四边形”推知四边形DEBF是平行四边形.
详解:(1)证明:∵四边形ABCD为平行四边形,
∴∠A=∠C,AD=BC,
在△ADE与△CBF中,
∴△ADE≌△CBF(ASA);
(2)四边形DEBF是平行四边形.理由如下:
∵DF∥EB,又由△ADE≌△CBF,知AE=CF,
∴AB﹣AE=CD﹣CF,即DF=EB.
∴四边形DEBF是平行四边形
练习册系列答案
相关题目